https://www.selleckchem.com/products/thz1.html
Aiming at the problem of fault diagnosis when there are only a few labeled samples in the large amount of data collected during the operation of rotating machinery, this paper proposes a fault diagnosis method based on knowledge transfer in deep learning. First, we describe the data collected during the operation as a two-dimensional image with both time and frequency-domain characteristics. Second, we transform the trained source domain model into a shallow model suitable for small samples in the target domain, and we train the shallow mo